Using a Wikipedia-based Semantic Relatedness Measure for Document Clustering

نویسندگان

  • Majid Yazdani
  • Andrei Popescu-Belis
چکیده

A graph-based distance between Wikipedia articles is defined using a random walk model, which estimates visiting probability (VP) between articles using two types of links: hyperlinks and lexical similarity relations. The VP to and from a set of articles is then computed, and approximations are proposed to make tractable the computation of semantic relatedness between every two texts in a large data set. The model is applied to document clustering on the 20 Newsgroups data set. Precision and recall are improved in comparison with previous textual distance algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Documents Using a Wikipedia-Based Concept Representation

This paper shows how Wikipedia and the semantic knowledge it contains can be exploited for document clustering. We first create a concept-based document representation by mapping the terms and phrases within documents to their corresponding articles (or concepts) in Wikipedia. We also developed a similarity measure that evaluates the semantic relatedness between concept sets for two documents. ...

متن کامل

Semantic smoothing for text clustering

In this paper we present a new semantic smoothing vector space kernel (S-VSM) for text documents clustering. In the suggested approach semantic relatedness between words is used to smooth the similarity and the representation of text documents. The basic hypothesis examined is that considering semantic relatedness between two text documents may improve the performance of the text document clust...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Clustering Document with Active Learning using Wikipedia

Wikipedia has been applied as a background knowledge base to various text mining problems, including document categorization, topic indexing and information extraction. However, very few attempts have been made to utilize it for document clustering. In this paper we propose to exploit Wikipedia and the semantic knowledge therein to facilitate clustering, enabling the automatic grouping of docum...

متن کامل

A Study on the Semantic Relatedness of Query and Document Terms in Information Retrieval

The use of lexical semantic knowledge in information retrieval has been a field of active study for a long time. Collaborative knowledge bases like Wikipedia and Wiktionary, which have been applied in computational methods only recently, offer new possibilities to enhance information retrieval. In order to find the most beneficial way to employ these resources, we analyze the lexical semantic r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011